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Chapter 1

Introduction

1.1 Motivation

1.1.1 The Digital World Explosion

The internet is becoming increasingly accessible with 4.5 billion users, an

annual growth rate of seven percent over just the last year. This coincides

with the fact that the global average active time using the internet is 6 hours

and 43 minutes per day (1). Active meaning direct interaction between users

and the internet. Businesses also recognize this transition and many are in-

creasing their online presence. Companies that have gone through digital

transformation are 26% more profitable than their peers in an MIT study

(2). With this much time spent on the web, people create many accounts

from banking and shopping. In addition to normal transactions activity,

social media has expanded greatly as well. From 2010 social media users

accounted for less than a billion users to almost 4 billion today in 2020 (3).

With the recent Covid-19 virus outbreak an increased reliance on the internet

and investments in digitization increased by 79% (2). Usage has expanded

to encompasses the sharing of much private information from financial infor-

mation, personal life information, health information, and more. This makes

security an ever-increasingly important issue as there are more vulnerabil-

ities for people to be hacked and exploited. Many companies secure only

1
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the private information their workers or customers use on their sites. This

results in the user having to interact with many accounts and creating large

numbers of passwords.

1.1.2 Password Issue

Using knowledge-based authentication approaches can be easy to implement.

However, many implementations using passwords also bring additional chal-

lenges, such as the hassle to memorize and reset passwords regularly. The in-

creased involvement of users often leads to weaker password selection. Of the

passwords in the survey, about 80% of them are found as weak in a McAfee

survey (4). There might be some thought that the newer generations are

more emersed in technology than their predecessors. That passwords they

produce would be more secure and that the new generation is more used

to the use of passwords. However, a study shows that 78% of adults be-

low the age of 40 find difficulty in remembering passwords, while a similar

amount of adults (75%) above 40 and below 65 have the same issue. Using

the same age divisions its found that there are little differences in the number

of unique passwords 4.04 average unique passwords for the older group while

the younger group averages 4.32 even though there are about a 20% increase

in the number of passwords from the older to the young group (5). However,

the digital footprints that the IoT connected devices are collecting continu-

ously can be used to authenticate and secure individuals in an implicit and

user-friendly manner. They also eliminate the need to memorize or create

your password removing the problem altogether.

1.1.3 Growth of Internet of Things

As the usage of the internet of things (IoT) is ever increasing and becom-

ing integrated into everyday life. Applications including access to physical

objects remotely may be granted through wearables. From 2000 to today,

the number of internet users has grown more than tenfold (413 million to



3

Figure 1.1: The most common smartwatch wearable locks

4.5 billion (6; 1)). This explosion of internet access gives rise to new smart

technologies. From smart glasses, smart watches to smart cars, so many con-

sumer products are being developed. With these wearable various examples

of private access points include alarm systems, entertainment devices, vehi-

cles, and smart home devices, to name a few. Some analysts predict that

within eight years, until 2022, there will be a 73% increase in the production

of smart wearables and a similar 78% increase in consumer sales (7).

In today’s modern wearables, devices either do not use authentication

systems or implement knowledge-based password locks (8), which pose the

same issues as traditional passwords (9). Along with traditional passwords

to access accounts, a user can be overwhelmed with additional wearable PIN

requests just to access various data and services that also may be password

protected. Another potential issue is that knowledge-based pin/pattern locks

require user interactions with the small display (if considering smartwatches),

which may either be inconvenient to a certain class of users or even completely

absent in many wearables (like headphones) (9; 10). Many times, users dis-

able the security to avoid the hassle of using the password, making these

devices vulnerable. The most common type of wearables locking devices im-
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plements either a regular numeric PIN or pattern lock shown in figure 1.1.

Nguyen and Memon show that these methods along with others have high

error rates even given that the users remember the password. ”Fat finger”

effects cause Numeric PIN, voice PIN, draw PIN, and pattern lock each to

suffer error rates of 7.5%, 14.0%, 20.7%, and 9.3% respectively (11). How-

ever, IoT generally measures a person’s biometrics leading to access to an

implicit digital footprint from a user and potential alternate security solution.

1.1.4 The Introduction of Implicit Authentication

As mentioned in the introduction, implicit authentication can be done through

biometrics. To develop an implicit and continuous authentication mechanism

for IoT-connected devices we have to consider the limitations of the device.

There are trade-offs among various parameters/constraints, such as types of

data, the granularity of data, computation power of the device, among sev-

eral others that need to be balanced to get optimal performance along with

usability. Some of the many biometrics researchers use are gait, gesture,

keystroke, voice, faces, palm prints, fingerprints, finger veins, electrocardio-

gram, or heart rate (12).

Additionally, different biometric have an inherent weakness, not from

the model itself but the nature of the biometrics Therefore, authentication

mechanisms are developed for specific devices as they used biometrics, and

application scenarios may not hold for continuous use. For example, while a

gait-based authentication system can achieve an accuracy of 92% (13), this

approach fails when a user is sedentary. Similarly, while the key-phrase-based

voice authentication approaches are highly accurate, they impose a burden

on users to remember the key-phase and requires the user to speak (14).

Multi-model schemes can provide a solution to these collections to fill the

gaps that each biometric may have.
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1.2 Contributions

The main contribution of this paper is the exploration of two contrasting

hierarchical continuous implicit authentication system for wearables using

coarse-grained soft-biometrics. Compared to previous work (15; 16), where

we use hybrid-biometrics, such as calorie burn that can be affected by a user’s

self-reported input, e.g., age, height, and weight, in this work we focus on

three different soft-biometrics, i.e., heart rate, gait, and breathing that

can be measured without a user’s self-reported input and can be easily ob-

tained from the market wearables. While minute-level coarse-grained heart

rate samples can be less informative, they are available almost all the time

when a user wears the device. Adding another biometric, such as gait, can

improve the performance. However, unlike the heart rate data, gait is avail-

able only when a user moves. Compared to gait, breathing audio signal can

have better availability, but it also suffers from various issues, such as a user’s

distance from the microphone, the presence of other sounds. Therefore, it

is important to develop a multi-biometric-based approach that can be easy

to implement on wearables and can have a way to decide which modalities

should be used based on contexts or scenarios.

In this work, we present two multi-biometric-based hierarchical context-

driven approaches (discussed in Section 4.3) that flexibly works in sedentary

and non-sedentary periods. We include both binary and unary models to

reflect the circumstances of the availability of other people’s data in addi-

tion to a valid user’s data. From our detailed analysis, we can authenticate

a user with an average accuracy 0.94 ± 0.07 and F1 score of 0.93 ± 0.08,

(Section 6.1), with a false acceptance rate of about 0.06 ± 0.07 while de-

veloping the binary SVM model in a sedentary state using heart rate and

breathing biometrics together (Section 6.1.2.1). We are also able to validate

users in a non-sedentary state with similar performances with an average ac-

curacy of 0.93 ± 0.06 and F1 score of 0.93 ± 0.03 using k- Nearest Neighbors

(k=2).Considering the situation where we do not have other users’ data, we
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develop unary models that allow for offline training since other users data

do not need to be downloaded. In the case of unary modeling, we obtain an

average accuracy of 0.72±0.10 and a F1 score 0.73±0.06 when sedentary and

0.72± 0.10 and a F1 score 0.72± 0.09 respective scores when non-stationary

using the SVM model (Sections 6).



Chapter 2

Related Work

2.1 Wearable Constraints

Wearable device user authentication is a relatively newer field of research

than mobile authentication (17; 18; 19; 9). The limited display sizes of wear-

ables limit the choices of authentication mechanisms (17; 15). Recently more

biometrics become available as more sensors are included in devices. Un-

fortunately, there still hold accuracy concerns. Apple ECG sensors are one

example of this. Researchers have found that, although for people over the

age of 85 Apple’s watches accurately detects atrial fibrillation at a rate of

96%, for people under 55 it only correctly diagnoses atrial fibrillation 19.6%

of the time (20). As in many of the other works in this field, there is con-

stant change in available technology pushing what is both optimal and most

available.

Availability of the sensor data is also a consideration we want to consider

in a continuous case. We can illustrate this issue by looking into one of many

identification schemes using vein imaging. Toygers work focused on using

the image of the veins in the wrist which produced an impressive 99% accu-

racy (21). Current wearable typically does not have cameras. Even if they

eventually do, continuous image capture has high battery consumption. The

data would also only available sporadically when the camera lens happens to

7
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graze over the intended body part (or in the wrist case, mostly covered by

the wrist wearable itself) or require active involvement from the user.

Finally, the security of data for wearables is also of great concern. Just

as when the first mobile phones came out, wearables sufferer from com-

putational capability. Training and updating machine learning models for

wearables currently need to be done outside the wearable itself. Storing data

outside of the used device invites hackers to stage middleman attacks (22).

This dilemma will subside as the wearables become more powerful as mobile

phones do now. Generally the current solution short range pairing solutions.

This reduces the chance of an attack while enabling the supporting device to

supplement the capabilities of the wearable (23).

2.2 Multi-modal Biometric Authentication

No matter how strong a single biometric may be, they have underlying weak-

nesses and blind spots. Gait implementation is a very popular single bio-

metric system but have difficulty when users are sedentary. Even with speed

adaptive gait cycle segmentation to achieve 92% accuracy (13). Other strate-

gies include indicating activity when using gait to authenticate (24). A per-

son’s gait movement is very different when a person is walking compared to

eating to writing. Adding more features can generate even higher perfor-

mance. Combining security measures typically increases the integrity of the

system. In Baughman’s work, he incorporates biometrics as one of the com-

ponents in a virtual wallet (25). This type of system while robust hinders

users from easily using the system with a multitude of security checks to au-

thenticate themselves. With increasingly more powerful cameras multi-modal

systems including imaging have become increasingly popular but difficult to

implement in an implicit system as previously mentioned. One such example

is a system using speech, fingerprint, and facial recognition. Each individ-

ual biometric may face noise: background noise for speech, dirty finger for
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fingerprint, and poor lighting in facial recognition (26). However together

they compensate for each other’s weaknesses. Collectively they are able to

produce a genuine acceptance rate for a valid user of 98.7% (27).

A better solution is using a multitude of implicit authentication methods

that together can strengthen the system against intruders but not suffer from

usability issues. Combinations of biometrics used to form multi-modal bio-

metric authentication systems for increased reliability compared to unimodal

systems, which often suffer from noisy data, intra-class variations, inter-class

similarities, and spoof attacks (28). Researchers have utilized different hard-

and soft-biometrics from these systems. However, due to accuracy concerns

the low computational power of wearables, these multi-modal approaches

are typically not implemented for implicit and continuous authentication on

state-of-the-art wearables. One of the primary goals and challenges of multi-

modal authentication systems is the handling of multiple physiological states.

One approach seeks to separate stationary and moving datasets to test on.

That way they can optimize data usage to achieve better results (29; 30).

However, with Fit-bit and other commonly used wrist wearable devices, we

can use activity state along with gait variability to determine the sedentary

state.

2.3 Wearable Authentication

A lot of biometric authentication schemes reside on mobile devices. This

suffers from the fact that mobile phones are not constantly on the human

body but need to be authenticated at any given time. Wearables, such as a

smartwatch are constantly on the user’s wrist and are only used when they

are on the user’s wrist. Sensors not on a wearable also have to deal with more

noise. An accelerometer on a mobile phone captures data that is affected by

the type of pants they wear or whether its in the user’s hand or pocket. An
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accelerometer on a smartwatch, although not completely immune to noise,

does not suffer from the major issues one would on the mobile device (31).

A lot of recent focus is on techniques that are more suitable for wearables,

focusing more on approaches based on behavioral biometrics. While other

projects have addressed some of the limitations of gait-based approaches by

considering different types of gestures (32) or activities (17; 10). All of these

models are based on movement and fail to work properly when the subject

is sedentary (33; 15). Authentication approaches using physiological biomet-

ric data, such as heart rate and bioimpedance (19) require very fine-grained

samples and sensor readings are easily affected by noise, motion, etc. but

are constantly available. There are many types of wearable sensors that

can gather diverse sets of data. We limit those that are readily available

in the market and are commonly used. One study used google glasses to

analyze ”functional biometrics” and included the movement and vibrations

of the head during certain functions. However, IoT glasses that were once

considered a potential fad is currently not commonly used (34). Focusing

on one or a particular set of biometrics restricts the usability of a contin-

uous authentication model. But with a collection of various combinations,

it is possible to build a more robust authentication process, adjusting when

certain biometrics become unavailable or available.

Other techniques involve the use of implicit after explicit authentication

system. Where a fingerprint is used as a stronger password and weaker bio-

metric signatures such as heart rate are used as continuous check afterwords

(35). Even though this is one of the strongest implementation schemes so far

we wish to push the boundaries with a completely implicit system.



Chapter 3

Datasets and Preprocessing

The goal of this paper is to demonstrate the effectiveness of a multi-step

biometric model in authenticating wearable device users with the help of

different machine learning models. Because we are using a multi-biometric

scheme, there is a multitude of sources we intend to use. We first explore

the datasets and data pre-processing strategies before looking into feature

generation. We went with two separate approaches that are further explained

in Section 4.3. In summary, the approaches are the Full scheme (maximizing

biometric combinations) and the Balanced scheme (optimizing performance

while ensuring an equal amount of biometrics).

3.1 Datasets

In this work, we use the following three different datasets, BMP for heart

rate, meters per second2 or degree per second for gait, and kHz per second

for breathing.

• Heart Rate dataset: With the use of a Fitbit Charge HR device, we

collected heart rate data at a rate of one sample per minute from 10

subjects just as in (12; 36), similar to our previous work (15; 37; 30;

16; 38; 39).

11
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• Gait dataset: We obtained gyroscope and accelerometer readings at a

rate of one sample in 50 milliseconds or 50 Hz using the LG G Watch

(running Wear 1.5 operating system) from the WISDM dataset (40).

Ten subject count data was used.

• Audio dataset: For the Full Scheme we sourced breathing audio from

the ESC-50 Dataset for Environmental Sound Classification. For the

Balanced scheme, from 10 subjects, we gathered breathing audio clips.

Each provided six distinct inhalation breathing events per clip using the

Evistr digital voice recorder (12) at a rate of 44.1 kHz per second. Data

is collected from the subjects in their rest state with the recording de-

vice within arms length of the subject’s mouth. Audio from wearables

is difficult to obtain due to security and this simulates close range audio

that can be collected from wearables such as headphones and glasses.

As per the noise clips for audio data augmentation, we collected clips

from the ESC-50 database. Noises consisted of vacuum and washing

machine sounds each containing five unique clips (41). The noise was

included in the balanced scheme in order to increase the strength of

audio training.

3.2 Data Pre-Processing

The raw datasets needed to be cleansed before using them. Following the

cleaning, we segment the continuous stream of biometrics, such as heart

rate and gait information into windows of information, while selecting de-

sired audio events (i.e., breathing). The next process is to add noise and

augmentations to audio events in order to simulate various environmental,

physical, and emotional circumstances users may be in increased robustness

of training similar to other audio works (42). We do this to then be better

able to compute and select the most influential features before constructing

authentication models.
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3.2.1 Data Segmentation

Because heart rate and gait data were sampled at different frequencies, we

need to segment the heart rate and gait samples into 10-sample windows to

obtain stable and rich information before feature generation. We use a 50%

sliding window to obtain 800 heart rate windows and 720 gait windows, i.e.,

instances from each subject. Windowing allows for increased data volume as

well as decreasing necessary latency time between authentication attempts.

Audio data comes with other types of sounds in addition to desired

breathing sounds or can contain multiple events in one clip. Additionally,

some clips come with multiple breathing events separated by silence or noisy

parts. For our authentication scheme, we defined inhalation as the authenti-

cation key. Therefore, we segment the audio clips into individual inhalation

breathing events. We were able to obtain around six inhalation breathing

events per subject. For the Full scheme and Balance scheme, each event is

then modified in 22 and 102 ways respectively mentioned in the next sec-

tion (Section 3.2.2) to further increase data volume. The resulting dataset

is magnified to a total of 612 instances from each subject. We consider the

same 132 or 612 instances from each of the three biometric while utilizing

the different biometrics to develop different models discussed in the Methods

section, i.e., Section 4.3. As a result, all testing regardless of what biometrics

consisted of the same amount of data was used.

3.2.2 Audio Data Augmentation

As stated a person’s breathing is affected and influenced by the change of

mood, the environment, or a person’s physical state. The alternations we

add to the breathing events are intended to simulate these variations. We

use pitch shifts, speed changes, and noise strategies to achieve this is an

augmentation of the original audio breathing events.
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• Pitch shift: For pitch shift, we consider 15 pitch shifts ranging from

-3.5 to 3.5 with 0.5 half-step increments.

• Speed change: We consider seven-speed changes ranging from .25x to

2x times the speed of an original clip with an increment of .25x, skipping

1x since that would represent the original clip, which is already included

as a pitch shift with value 0.

• Noise Superposition: We use 10 vacuum and washing machine sound

clips, obtained from the environmental sound classification database (41),

as background noises to modify original breathing event clips. In addi-

tion to this eight different signal-to-noise ratio levels ranging from 10−4

to 104, incremented by magnitudes of 10 while skipping 1 were used

as various volumes of background noises. This noise superposition is

implemented in a Balanced scheme.

As a result, each original breathing clip is modified 22 times without noise

superposition and 102 times with noise superposition.



Chapter 4

Feature Engineering

After gathering and cleaning the data we have to format it to be processed

properly. We will go through the feature computation process as long with

how we select the most impactful to optimize performance.

4.1 Feature Computation

In order for the machine learning models to understand the data being feed

to them the data must be translated into understandable features. These

features are an expression of the data and we compute the following sets of

candidate features.

• Heart rate features: From each 10 sample window we compute 21 sta-

tistical features: mean (µ), median (Mdn), standard deviation (σ),

variance (σ2), coefficient of variance (cov), range (ran), coefficient of

range (coran), first quartile or 25th percent (p25), third quartile or

75th percent (p75), max (max), interquartile range (iqr), coefficient of

interquartile (coi), mean absolute deviation (mad Mdn), median ab-

solute deviation (mad µ), energy (E), power (P ), root mean square

(rms), root sum of squares (rss), signal to noise ratio (snr), skewness

(γ), and kurtosis (κ), described in (16).

15
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• Gait features: We compute the same above mentioned 21 features from

each window of x-, y-, z-axis readings obtained from both gyroscope

and accelerometer.

• Audio features: From each inhalation breathing event (original and

augmented), we computed three categories of audio features. Of the

cepstral coefficients, 40 Mel-frequency cepstral coefficients (MFCCs).

Details on audio feature calculation can also be found on the Librosa

main page (43).

Thereby, we obtain 21 and 168 (21 from each of the six axes and two fusion

values) features from a single window of heart rate and gait data, respectively,

and 40 features from every breathing clip. When describing the combined

biometric models in Section 4.3, we take the features from the separate bio-

metrics and combine the unique subjects together. Having time and subject

synced data is ideal, however as a trial test the results from this method will

provide a baseline performance.

4.2 Feature Selection

When considering the training of models we have developed two types: unary

and binary which will be discussed more in Section 4.3. Overall there were

three types of feature selections used.

In the correlation approach, We wanted to get rid of features that had a lot

of similarity between with other features as it shows that they provide similar

information, thus redundant. If a feature was found to have a correlation

value with a high absolute value, then that feature was excluded.

A SelectFromModel the idea is that certain algorithms can produce weights

of significance. For example decision trees branching from the original dataset

and are split on a computed ”best” feature. In our case, one of the classifiers

we use is a random forest. With random forest being a bagging implemen-

tation of decision trees we used it as the basis for feature selection. The tree
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uses Gini criteria to select feature importance. The tree quickly builds its

structure and ranks features. From here we can establish a threshold with

which we consider the features important. We talk about the top features

that hold 90% explainability as the selected features.

When there is not an opportunity to use the classifier to prune features,

we use another Sci-kit learn feature selection package “Select the K Best

Features” (SelectKBest). SelectKBest provides an importance score for each

feature and based on that score we rank the features. The scoring is based

on a univariate statistical test checking the predictive power of individual

features with the label. In our case, we use ANOVA F-value as the evaluation

metric. We try with different numbers of features, i.e., K, to find the best

model performance.

In the case of unary models feature selection process uses a different

approach. Unary models were trained with the same data as the binary

models with the imposter data left out in the training phase. As a result,

SelectKBest nor SelectFromModel are not effective. We use the least variance

check. The main idea is that given a set of biometric features of only one

class/valid user, features that vary the least are more likely to be identifying

features. Just like in the binary case it is optimal to select the top x number

of features lowest variance based on the number of biometrics considered.

In summary, the four strategies detail the selection process:

• Correlation approach: We apply this approach to select the most influ-

ential heart rate and gait features. We find that mean, variance, and

skewness are the three uncorrelated features from both heart rate and

gait. Therefore, we remain with three heart rate features and 18 gait

features obtained from the three axes of acceleration and gyroscope

readings. This method was used in both strategies.

• Select from Model (SelectFromModel): This feature selection approach

provides relative importance of features in percentages. Table 4.2 shows
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an example set of features selected using the SelectFromModel (with

the explanation threshold, p = 0.90) approach. In the figure, green

bars represent the features selected for modeling when used in the full

comparison.

• Select the K Best (SelectKBest): This is our last feature selection

approach that also provides an importance score for each feature and

based on that score we rank the features. Then, we try with different

numbers of features, i.e., K, to find the best model performance. In this

work, we find K = 10 was optimal when considering full comparison

then k = 20 performs the best scheme when considering a Balanced

comparison. An example of this can be seen in Figure 4.1

• Low Variance: Used in univariate or one-class classification. We took

the top 20 lowest variance features as those most important in the

Balanced scheme and the top 10 in the Full scheme. An example of

this can be seen in Table 4.3.

In each iteration of the leave-one-out validation, described in Section 5.1,

we select different feature sets, which are essentially similar to changes in

order.

Tables 4.1 presents the list of best feature sets obtained from different

biometrics using different selection approaches. Table 4.2 presents the lists of

selected features obtained using different selection approaches during one of

the leave-one-out training-testing cases (Section 5.1) considering heart rate,

gait, and breathing features together. Little variation between runs occurred

and the table is displayed with the 1st iteration for simplicity.
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Figure 4.1: Top 25 heart rate and gait features selected (top 20 green bars
are used for modeling) using the SelectKBest approach.

Table 4.1: Summary of features selected from different biometrics
Biometrics Selector Selected features

(parameters)
Heart rate SelectKBest p25, µ, rss, rms, max, Mdn, p75, κ, γ, P

(K = 10)
Heart rate SelectFromModel Z-gy κ, Y-gy κ, Y-acc µ, µ, Z-gy σ2, Z-acc κ,
and gait (p = 0.90) X-acc κ, Y-gy σ2, Y-acc κ, X-acc µ, X-acc

σ2, Z-acc σ2, Y-acc σ2

Heart rate SelectKBest MFCC3, MFCC7, MFCC4, MFCC6,
and breathing (K = 10) MFCC9, MFCC11, MFCC15, MFCC38,

MFCC13, MFCC40

4.3 Methods

Generally, any given normal daily activity can be put as either a sedentary

or non-sedentary state. This is essentially describing a person in motion or

not in motion. As mentioned before we had two approaches, the Full scheme,

and the Balanced scheme. The idea behind the Full scheme is that we want
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Table 4.2: Summary of features selected from heart rate, gait, and breathing
biometrics together
Selector (parameters) Selected features
SelectFromModel MFCC3, MFCC4, MFCC7, MFCC1, MFCC6, Z-gy κ,
(c = 0.90) MFCC9, Y-acc µ, MFCC13, Y-gy κ, Z-acc κ, MFCC10,

MFCC15, X-acc κ, MFCC11, MFCC18, MFCC36,
MFCC38, MFCC26, MFCC17, MFCC12, MFCC14, Z-
gy σ2, µ

SelectKBest MFCC3, MFCC7, MFCC4, MFCC6, MFCC1, Y-acc µ,
(K = 10) MFCC9, MFCC38, MFCC2, MFCC11

Table 4.3: Summary of features selected as per low variance uniary models
model (Breathing features dominated Heart Rate features)
Unary Classifier (parameters) features selected
Heart Rate Model
SVM (RBF kernel, nu = 0.5) coran, mad µ, σ, coi, mad Mdn, p25,

ran, cov, iqr, µ
Heart Rate and Gait Model
SVM (RBF kernel, nu = 0.5) coran, X-gy snr, Y-gy coi, Y-gy snr, Y-

acc snr, X-acc coran, Y-gy mad µ, Y-gy
mad Mdn, Z-acc mad Mdn, Z-acc coran

Heart Rate and Breathing
Model
SVM (RBF kernel, nu = 0.5) coran, mad µ, σ, coi, mad Mdn,

MFCC39, MFCC26, MFCC30, MFCC36,
MFCC40

Heart Rate, Gait, and
Breathing Model
SVM (RBF kernel, nu = 0.5) coran, X-gy snr, Y-gy coi, Y-gy snr, Y-

acc snr, X-acc coran, Y-gy mad µ, Y-gy
mad Mdn, Z-acc mad Mdn, Z-acc coran

to see the full utilization of the biometric within the scheme. The full scheme

uses all combinations of biometrics in a given state. The Balanced scheme

is based on trying to ensure that there are equal amounts of biometrics in a
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Figure 4.2: Authentication model development. For Balanced scheme train-
ing only the blue arrows are considered

given state.

A high-level illustration of the implicit authentication process of the full

comparison method can be described through Figure 4.2. When looking at

the Balanced scheme we do not include the HRGB model and therefore omit-

ting the arrow from the audio signal and the non-sedentary state. In order to

strengthen the HRB model, we include noise augmentation as mentioned in

4.1. In the binary case both the subject classified as the valid user and those

considered imposters are used in training. For unary models, only data from

the valid user is included in the training. The primary sensors focused on this

study is the PPG sensor, accelerometer, gyroscope, and microphone. From

each senors, we draw raw signal data and interpret them with the features

listed in 4.1. Although we are collecting sensory data constantly based on the

physical state of the individual strength we will select a fusion model com-

prised of one or more biometrics. From the sedentary perspective, we can fuse

heart rate and breathe in model combinations. In the non-sedentary state,

we can fuse combinations from any of the three heart rate, gait, and breath-

ing. We train each of the fusion level models with various algorithms. In

practice, the decision and confidence of that model will determine if another
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Figure 4.3: Proposed deployment scheme for the Full Scheme

model comprised of a more sophisticated biometric combination is needed or

if we can accept the user.

In Figure 4.3, we present an implementation flow chart of the implicit

and continuous wearable-user authentication scheme using person-dependent

multiple biometrics.

The system initially tries to authenticate a user using the heart rate ob-

tained from the photo-plethysmogram (PPG) sensor because this biometric

data is most easily obtainable. However, coarse-grained (one sample per

minute) heart rate data may not be precise enough to identify the user. Ad-

ditionally, factors such as motion artifacts or stress affect all people in similar
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enough ways to cause confusion. Therefore, if the system cannot authenticate

the user with enough confidence, it checks the next authentication module

that increases the amount of biometrics used.

The system then tries to check whether the user is moving to utilize

the on-device accelerometer and gyroscope data. If so, the system tries to

authenticate the user based on a combination of gait and heart rate bio-

metrics. The user can access the device if the system can authenticate the

user with enough confidence. In the sedentary states, although gait is not

available, audio recordings from wearables still are. Therefore, the breathing

audio recordings could be a good biometric to identify users during sedentary

states.

Given that the system still can not authenticate a non-sedentary user

from two biometrics a three biometric combination of heart rate, gait and

breathing will be tested. If the system can authenticate the user with enough

confidence, it allows the user to access the device. Otherwise, the user’s access

to the device is revoked and require some sort of external verification, such

as pin locks or passwords.

Based on the various combinations of the three biometrics that we use in

our approach, we define the following models:

• Heart rate data-driven model (HR model)

• Heart rate and gait data-driven model (HRG model)

• Heart rate and breathing data-driven model (HRB model)

• Heart rate, gait, and breathing data-driven model (HRGB model)

It is important to know why this pathway exists and that we do not

just only use the HRB sedentary model or the HRGB non-sedentary model.

People use many types of wearables other than a smartwatch that we based

this system on. People may also turn off certain sensors for privacy issues.

Therefore its important to have all levels of complexity to handle cases where
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sensors are not available. The Balanced scheme has a similar system flow

but without the HRGB model as seen in Figure 4.4.

In the development of the above models, we consider various classifiers.

These include Random Forest (RF), k-Nearest Neighbor (k-NN), Naive Bayes

(NB), and Support Vector Machine (SVM) with binary and unary schemes

using the Sci-kit learn libraries. Compared to binary, unary models are

available only for the SVM classifiers.

Figure 4.4: Proposed deployment scheme for the Balanced Scheme



Chapter 5

Experiment Methodology and
Metrics

Now we present how the training-testing set split and our modeling schemes,

followed by the performance measures we use to compare the learners and

hyper-parameter optimization.

5.1 Training-Testing Set

In our binary modeling, we separate data into two classifications: a valid user

(class-0) from the impostors (class-1). A common procedure to avoid over-

fitting is to consider at least 10 times more feature windows, i.e., the number

of instances than the number of features. Additionally, when performing

training-testing, we follow the leave-one-out strategy. This means when we

train and test N unique models one-by-one for each user with N number

of instances. During each training-testing, we keep the N th instance/audio

event for testing and use the rest of the nonN th orN−1 instances for training.

In the Full scheme, we used 3 subjects and in the Balanced scheme we have

10 subjects and perform 6 leave-one-out testings for each subject; thereby,

all aggregated performance measures presented in this paper are based on 18

and 60 performance measures for Full and Balanced schemes respectively.

25
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For class balancing, in the case of binary models, we consider the same

N − 1 number of instances from each class. Given that our imposter class

consists of M person data, we pick (N −1)/M instances from each imposter.

Using the balanced scheme for example, while training an HR model, we

consider 510 heart rate windows from a target/valid user and 510/9 ≈ 56

windows from each of the nine imposters. In the test set, we consider 102

windows from the valid user and 102/9 ≈ 11 windows from each imposter.

Similarly, while training an HRB model, we use 510 windows, i.e., breathing

events from a valid user in addition to 510 heart rate windows. Where,

510 breathing events are obtained from the five original breathing events

and their 102 augmented events, i.e., 5 × 102 = 510. To keep the training

and test set separate, to use the remaining one breathing event and its 102

augmented events, i.e., 102 events/windows. For imposter, we uniformly

select the windows to ensure a balanced classification. In the case of unary

models, we also follow the leave-one-out strategy. However, compared to the

binary, unary models are developed with only a valid user’s data with an

outlier rate (ν), which is used to split the user’s data into valid and outlier

groups. In the case of our experiments, we find ν = 0.5 as the optional outlier

rate.

5.2 Performance Measures

To evaluate the performance of different modeling approaches, we consider

the Accuracy (ACC), Root Mean Square Error (RMSE), Genuine Rejection

Rate (GRR) (an inverse measure of the False Acceptance Rate (FAR)), Gen-

uine Acceptance Rate (GAR) (an inverse measure of the False Rejection Rate

(FRR)), F1 Score, Area Under the Curve - Receiver Operating Characteristic

(AUC-ROC). Where terminologies of the measures are defined in the follow-

ing:
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Accuracy (ACC), which is the fraction of predictions that are correct, i.e.,

ACC =
TP + TN

TP + FN + FP + TN
(5.1)

Root Mean Square Error (RMSE), which is the square root of the sum

of squares of the deviation from the prediction to the actual value. It is

equivalent to the square root of the rate of misclassification, i.e.,

RMSE =

√
FP + FN

TP + FN + FP + TN
(5.2)

Genuine Rejection Rate (GRR), which is the fraction of invalid users

rejected by an authentication system, or one minus the False Acceptance

Rate (FAR)i.e.:

GRR =
TN

FP + TN
= 1 − FAR (5.3)

Genuine Acceptance Rate (GAR), which is the inverse of False Rejection

Rate (FRR), i.e. :

GAR =
TP

TP + FN
= 1 − FRR (5.4)

F1 Score, which is the measure of performance of an authentication system

based on both it precision (positive predictive value) and recall (true positive

rate) measures, i.e.:

F1Score = 2

(
TP

TP + FN
+

TP

TP + FP

)−1

(5.5)

Area Under the Curve - Receiver Operating Characteristic (AUC-ROC), which

is the graphical relationship between FAR and FRR with the change of

thresholds. Where terminologies used in Equations 5.1, 5.2, 5.3, 5.4, and 5.5

have their usual meaning in machine learning, when classifying a subject us-

ing a feature set. Therefore, a desirable authentication system should have

lower negative measures (i.e., RMSE, FAR, and FRR), but higher positive
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measures (i.e., ACC, F1 Score, and AUC-ROC) of performance. In design-

ing security there is a trade-off between FAR and FRR. FAR represents the

strength of the authentication system and is the key goal where the lower the

score the better. However, if you sacrifice too much of FRR (by increasing

FRR to lower FAR) than the usability of the system suffers, pushing users

to opt-out of using the system.

We also use Equal Error Rate (EER), which is defined as the point when

FRR and FAR are equal, i.e., a trade-off between the two error measures

(i.e., FRR and FAR) and with the k-NN Heart Rate model shown in figure

6.7 the EER is at the confidence threshold of 52%.

5.3 Hyper-Parameter Optimization

To avoid creating boiler-plate code, we used the Sci-kit Learn library grid

search function to find the optimal hyper-parameter sets. For each leave-

one-out modeling, we separately perform the hyper-parameter optimization

using various ranges of values. From the different iterations of the leave-one-

out approach, we obtain similar values for the hyper-parameters which are

reflected in Tables in Chapter 6.



Chapter 6

Evaluation

6.1 Authentication Model Evaluation

Here we will discuss the various performances of the Full scheme models and

the Balanced scheme models. Then we will take a look at the what the

differences are and their significance.

6.1.1 Full Scheme performance

We present the performance of the performances of the best classifiers and

their optimal parameter sets for one and two biometric combinations in Table

6.1. We can see that the best HR model (i.e., model that only uses features

from heart rate data) can provide an average accuracy of 0.61± 0.18 and an

average AUC-ROC 0.54 ± 0.07. As we stated previously in Section 4.3, if

the HR model cannot authenticate a user with enough confidence or fails to

authenticate and the user is considered to be non-sedentary, we move on and

consider an additional gait biometric (i.e., HRG model).

Table 6.1 shows that the addition of the gait biometric (when available

and the user is considered non-stationary) along with heart rate, all measures

improve. When observing performance measures of the best HRG model (i.e.,

model that uses heart rate and gait biometrics), ACC increased by 38%, F1

score increased by 218%, and AUC-ROC increased by 56% compared to the

29
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best HR model. The FAR also improves (i.e., drops) from 0.70 ± 0.20 to

0.26 ± 0.10. While gait data is only available while a user is moving, its

inclusion can be considered available, it can significantly boost the authenti-

cation performance when comparing to a model that uses only less accurate

minute-level heart rate data.

From Table 6.1, we can also observe that the two biometric level seden-

tary model: the HRB model (i.e., model that uses heart rate and breathing

biometrics) achieves even better performance compared to the HRG model.

We achieve a significant 35% drop in the FAR while comparing the HRB with

the HRG model. Along with this, we observe that there is ≈ 8% increases,

while comparing the ACC, F1 score, and AUC-ROC when comparing the

to its two biometric non-stationary counterpart. However, when comparing

the HRB model to the HR model, we observe a much larger performance

improvement. Compared to the HR model, the HRB model performs better

with a F1 score (an increase of 241%) and AUC-ROC (an increase of 68%)

with high accuracy of 0.91± 0.02. This shows that is breathing audio is also

available it greatly strengthens the performance of the sedentary model from

just heart rate.

Lastly we present the performance comparison among all the different

classification models we considered. Their optimal parameter sets using the

heart rate, gait, and breathing biometrics together can be seen in Table 6.2,.

From the table, we observe that there is a modest performance improvement

when comparing the HRGB model with the HRB model, i.e., an accuracy

increase of accuracy by 2% (0.91 to 0.93). Similar pattern of small im-

provements are observed in the case of other performance metrics. Although

improvements to scores are minimal, in the case of the HRGB model, we

obtain a simpler and faster classifier, i.e., the k-NN with k = 2 (number of

neighbors needed for classification), when compared to the HRB model that

uses the k-NN model with k = 6. Therefore, if we consider the implemen-

tation feasibility on limited power devices, i.e., a wearable, that has energy
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Table 6.1: The best HR, HRG, and HRG models with average and standard
deviation of performance measures
Model Classifier Feature ACC RMSE FAR

(parameters) count
HR SVM (poly. kern., 10 0.61 (0.18) 0.62 (0.16) 0.70 (0.20)

d = 2, C = 1)
HRG RF (n = 500) 13 0.84 (0.09) 0.40 (0.01) 0.26 (0.10)
HRB k-NN (k = 6, 10 0.91 (0.04) 0.29 (0.04) 0.17 (0.04)

minkowski dist.)
Model Classifier Feature FRR F1 score AUC-ROC

(parameters) count
HR SVM (poly. kern., 10 0.08 (0.16) 0.27 (0.09) 0.54 (0.07)

d = 2, C = 1)
HRG RF (n = 500) 13 0.05 (0.03) 0.86 (0.03) 0.84 (0.04)
HRB k-NN (k = 6, 10 0.00 (0.00) 0.92 (0.03) 0.91 (0.02)

minkowski dist.)

constraints, an authentication model that uses heart rate, gait, and breathing

biometrics, and the k-NN classifier with k = 2 can be a better choice when

available.

6.1.1.1 Error Analysis

As discussed previously in Section 4.3, the authentication system only grants

access to the device when it can confidently validate the user. Now we analyze

how our system performs increases with the change of confidence level, i.e.,

threshold. In case of an ideal system, it is desired to have a lower FAR and

FRR. As states in the previous Section 5 FAR and FRR have robustness

and usability implications. In Figures 6.1 and 6.2, we present our analysis of

error rates (FAR and FRR) with increasing confidence thresholds. In Figure

6.1, we observe that FAR sharply drops with the increase of thresholds from

0.1 to 0.9 and the FAR drops below 0.05 at confidence threshold 0.9. Bu

in Figure 6.2, we observe a sharp drop between threshold values of 0.4 and

0.5. The FAR drops from 0.14 to 0.08 during this increase of threshold, but
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Table 6.2: The best HRGB models with average and standard deviation of
performance measures

Classifier feature ACC RMSE FAR
(parameters) count
RF (n estimators = 450) 23 0.91 (0.04) 0.31 (0.00) 0.19 (0.04)
k-NN (k = 2, 10 0.93 (0.06) 0.27 (0.01) 0.14 (0.07)
minkowski distance)
NB 10 0.91 (0.01) 0.30 (0.00) 0.18 (0.01)
SVM (poly. kernel, 10 0.92 (0.03) 0.29 (0.01) 0.17 (0.06)
d = 1, C = 1)
SVM (rbf kernel, 10 0.93 (0.03) 0.27 (0.01) 0.15 (0.06)
γ = 0.01, C = 1)
Classifier feature FRR F1 score AUC-ROC
(parameters) count
RF (n estimators = 450) 23 0.00 (0.00) 0.91 (0.05) 0.91 (0.02)
k-NN (k = 2, 10 0.00 (0.00) 0.93 (0.03) 0.93 (0.04)
minkowski distance)
NB 10 0.00 (0.00) 0.92 (0.01) 0.91 (0.01)
SVM (poly. kernel, 10 0.00 (0.00) 0.92 (0.02) 0.92 (0.03)
d = 1, C = 1)
SVM (rbf kernel, 10 0.00 (0.00) 0.93 (0.03) 0.93 (0.03)
γ = 0.01, C = 1)

remains steady before and after that range of confidence threshold. Though

the FAR in the HRGB model remains a little bit high compared to the

HRB model, the HRGB model needs a smaller confidence threshold of 0.5

to achieve this FAR and at this 0.5 confidence threshold HRGB model can

drop the FAR ≈ 54% compared to the HRB model (i.e., FAR of 0.08 versus

0.175). As you increase the confidence thresholds it indicates that the model

has a higher requirement before making the decision extending the number

of data samples it may need. Therefore, it is more desirable to use the HRGB

authentication model (that uses heart rate, gait, and breathing biometrics)

with a low confidence threshold of 0.5 as it has a lower data barrier.



33

Table 6.3: Summary of unary classifiers for various single and multi-biometric
Unary models [Avg (Std)] for low variance
Model Classifier feature ACC RMSE FAR

(parameters) count
HR SVM (rbf kernel, 10 0.53(0.06) 0.06 (0.00) 0.53 (0.05)

nu = 0.5)
HRG SVM (rbf kernel, 10 0.48 (0.03) 0.07 (0.00) 0.66 (0.03)

nu = 0.5)
HRB SVM (rbf kernel, 10 0.52 (0.07) 0.06 (0.00) 0.51 (0.04)

nu = 0.5)
HRGB SVM (rbf kernel, 10 0.48 (0.03) 0.07 (0.00) 0.66 (0.03)

nu = 0.5)
Model Classifier feature FRR F1 score AUC

(parameters) count
HR SVM (rbf kernel, 10 0.41 (0.13) 0.55 (0.08) N/A

nu = 0.5)
HRG SVM (rbf kernel, 10 0.37 (0.08) 0.55 (0.05) N/A

nu = 0.5)
HRB SVM (rbf kernel, 10 0.45 (0.11) 0.53 (0.09) N/A

nu = 0.5)
HRGB SVM (rbf kernel, 10 0.37 (0.08) 0.55 (0.05) N/A

nu = 0.5)

6.1.2 Balanced Scheme

The Balanced scheme in terms of its process flow is similar to that of the

Full scheme beside the fact they we do not use a HRGB model as discribed

in Section 4.3. Now we discuss an analysis of how the Balanced scheme

performs. As in the Full scheme, it is desired to have a lower FAR and FRR.

The Balanced scheme HR performance scores for the tested classifiers

is shown in Table 6.4. Here, we can see that the best binary HR model

(i.e., model that only uses heart rate data) can provide an average ACC and

AUC-ROC of 0.66 ± 0.11. As so in the Full scheme, if the HR model is

not confident enough to authenticate a user or fails to authenticate, we use
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Figure 6.1: The change of FAR and FRR with varying confidence thresholds
(HRB model with the k-NN classifier)

additional biometrics, such as gait or breathing sound. Compared to binary,

for the unary HR model, we observe low performance, i.e., an average ACC

of 0.56±0.08 from unary models. Unary models lose the avantange of having

imposter data in the training process since considers portions of a valid user’s

data as outliers.

In Table 6.5, we can see that by being able to add gait biometric (when

user is in motion) with heart rate, all measures improve just as they do

in the Full scheme. In the case of the best binary HRG model, ACC and

AUC-ROC increased by 24%; F1 score increased by 29% compared to the

respective best binary HR model. The FAR also improves (i.e., drops) from

0.29 ± 0.16 to 0.17 ± 0.09. Similarly to binary, the unary HRG model shows

greater promise over the unary HR model with an overall increase of about

29% both for ACC and F1 score.

Table 6.6 performances show that the HRB model achieves better perfor-

mance compared to the HRG model as it did in the Full scheme as well. We

achieve a 65% drop in the FAR while comparing the binary HRB with the

binary HRG model. Additionally, we observe ≈ 15% increase, while compar-
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Figure 6.2: The change of FAR and FRR with varying confidence thresholds
(HRGB model with the k-NN classifier)

ing the ACC, F1 score, and AUC-ROC of the binary HRB model with the

binary HRG model. While comparing the HRB model to the HR model, we

observe a similar huge performance improvement. Compared to the binary

HR model, the binary HRB model performs better in terms of F1 score (an

increase of 48%) and AUC-ROC (an increase of 42%) with high accuracy of

0.94 ± 0.07. The unary HRB model performs similarly to the unary HRG

model with a lower standard deviation, i.e., higher consistency, in terms of

ACC (0.10 vs. 0.07) and F1 score (0.09 vs. 0.06).

Since the performances between Full scheme and Balance scheme echo

each other, we want to take a different view of the Balanced scheme’s perfor-

mance measures to see what we can observe from both. In Figure 6.3and 6.4,

we present the visualization of different performance measures. In addition

to the traditional five measures of a box plot, we also present the average

value.

In Figure 6.3and 6.4, we revisit the performances in Table 6.6. The plot
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Figure 6.3: Box plots of (a) positive and (b) negative measures of performance
of the HRB model with Binary SVM RBF classifier. Cross markers (×)
represent the average values.
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Figure 6.4: Box plots of (a) positive and (b) negative measures of performance
of the HRB model with Unary SVM RBF classifier. Cross markers (×)
represent the average values.
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Figure 6.5: PDF and CDF with error bars of binary HRB SVM (RBF) model
performance.

Figure 6.6: PDF and CDF with error bars of unary HRB SVM (RBF) model
performance
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shows that the median of each performance measure is better than average

since the average metric is easily affected by outliers, which we left out for

the simplicity of visualization. We obtain 2.6% better ACC, 2.8% better F1

score, 59% better FAR, and 89% better FRR, while comparing the median

with average values. Additionally, we observe that the interquartile ranges

ofdifferent performance measures are about 0.07 (Upper Figure 6.3) and 0.05

(Lower Figure 6.3). Similarly, unary models in Upper Figures 6.4 and Lower

Figure 6.4 show in the case of unary modeling, we obtain tighter interquar-

tile ranges. These narrow interquartile ranges represent the consistency of

performance measures.

Another view is that of the distribution scores through buckets. Figure

6.5 and 6.6 present the Probability Distribution Function (PDF) and Cu-

mulative Distribution Function (CDF) with error bars of performance of the

best binary and unary models, respectively. In Figure 6.5, around 65% of

the performance values (both ACC and F1 scores) fall in the range of 0.95–1,

which shows that our models perform very well for the most of the cases.

In the case of unary modeling, we observe that ≈ 66% (2
3
) of the values fall

in the range of 0.7–0.8, which is also a reasonable performance for unary

model (16). Additionally, in the figure, we observe that both binary and

unary errors bars are very short, i.e., achieved performance values are highly

consistent. Therefore, our developed models consistently perform well.

6.1.2.1 Error Analysis

Now we present an analysis on how Balanced scheme performs with the

change of confidence levels, i.e., thresholds, preferring to have a lower FAR

and FRR. In Figures 6.7, we present our analysis of error rates (FAR and

FRR) with varying confidence thresholds for the binary HRB SVM (RBF)

model. We observe that at confidence threshold 0.52 FAR and FRR intersects

with an equal error rate (EER) of about 0.06. After this point, error rates
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Figure 6.7: Change of error rates with varying confidence thresholds using
the binary HRB SVM (RBF) model.

drop quickly. We observe that FAR and FRR drops below 0.05 after threshold

values around 0.6 and 0.7, respectively.

6.1.3 Scheme Comparison

When comparing the schemes Binary models we can see that there are very

interesting results. First when looking at the sedentary path, we see that

for he HR model we see very similar accuracy results 0.61 ± 0.18 in the Full

scheme and 0.64 ± 0.12 in the Balanced Scheme. However if we look at the

F1 Score and AUC-ROC differences we see a different picture. Average F1

Score increases by 133% and average AUC-ROC by 22%. So when consider-

ing heart rate alone increasing the feature count and subject count greatly

improves performance. When looking at the HRB models we are compar-

ing more changes between the schemes. The Balanced Scheme implemented

more subjects as well as noise augmentation. The additional prepossessing

increased the average accuracy and F1 Score by only 3% and 1% respec-

tively.From a feature selection and generation standpoint more data samples
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Table 6.4: The best HR models with average and standard deviation of
performance measures
BINARY Model
Classifier feature ACC RMSE FAR
(parameters) count
RF (n estimators = 450) 20 0.64 (0.12) 0.04 (0.01) 0.30 (0.15)
k-NN (k = 32, 20 0.63 (0.11) 0.04 (0.01) 0.37 (0.15))
minkowski distance)
NB 20 0.65 (0.11) 0.04 (0.01) 0.36 (0.25)
SVM (RBF kernel, 20 0.66 (0.11) 0.04 (0.01) 0.29 (0.16)
γ = 0.03, C = 3)
SVM (Poly. kernel, 20 0.65 (0.12) 0.04 (0.01) 0.26 (0.20)
d = 1, C = 1)
UNARY Model
SVM (RBF kernel, 20 0.56 (0.08) 0.05 (0.00) 0.41 (0.14)
γ = 0.05, nu = 0.5)
BINARY Model
Classifier feature FRR F1 score AUC-ROC
(parameters) count
RF (n estimators = 450) 20 0.42 (0.16) 0.61 (0.14) 0.64 (0.12)
k-NN (k = 32, 20 0.36 (0.14) 0.63 (0.12) 0.63 (0.11)
minkowski distance)
NB 20 0.39 (0.19) 0.61 (0.12) 0.63 (0.11)
SVM (RBF kernel, 20 0.38 (0.17) 0.63 (0.14) 0.66 (0.11)
γ = 0.03, C = 3)
SVM (Poly. kernel, 20 0.44 (0.23) 0.59 (0.18) 0.65 (0.12)
d = 1, C = 1)
UNARY Model
SVM (RBF kernel, 20 0.46 (0.09) 0.55 (0.08) N/A
γ = 0.05, nu = 0.5)

and features were used in the Balanced scheme including handling all kinds

of environmental and physiological variations. Additionally even with the

subject count increasing from three to 10 there was no material change in

performance. This is significant because the pain point of the binary models
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Table 6.5: The best HRG models with average and standard deviation of
performance measures

BINARY Model
Classifier feature ACC RMSE FAR
(parameters) count
RF (n estimators = 450) 20 0.69 (0.13) 0.04 (0.01) 0.47 (0.32)
k-NN (k = 24, 20 0.79 (0.07) 0.03 (0.01) 0.19 (0.10)
minkowski distance)
NB 20 0.65 (0.10) 0.04 (0.01) 0.28 (0.26)
SVM (RBF kernel, 20 0.82 (0.08) 0.03 (0.01) 0.17 (0.09)
γ = 0.05, C = 5)
SVM (Poly. kernel, 20 0.78 (0.09) 0.03 (0.01) 0.19 (0.12)
d = 3, C = 14) 20
UNARY Model
SVM (RBF kernel, 20 0.72 (0.10) 0.04 (0.01) 0.28 (0.16)
γ = 0.05, nu = 0.5)
BINARY Model
Classifier feature FRR F1 score AUC-ROC
(parameters) count
RF (n estimators = 450) 20 0.15 (0.21) 0.73 (0.21) 0.71 (0.13)
k-NN (k = 24, 20 0.23 (0.09) 0.79 (0.08) 0.79 (0.07)
minkowski distance)
NB 20 0.42 (0.27) 0.62 (0.20) 0.66 (0.10)
SVM (RBF kernel, 20 0.19 (0.10) 0.81 (0.08) 0.82 (0.08)
γ = 0.05, C = 5)
SVM (Poly. kernel, 20 0.25 (0.13) 0.77 (0.10) 0.78 (0.09)
d = 3, C = 14) 20
UNARY Model
SVM (RBF kernel, 20 0.29 (0.08) 0.72 (0.09) N/A
γ = 0.05, nu = 0.5)

is that it required other person’s data when considering implementation. If

large verity of subjects data is needed it becomes more difficult to implement

as there does not need to be as many user’s data exposed when training

and can be scaled to a small user base. With three subject count perform-
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Table 6.6: The best HRB models with average and standard deviation of
performance measures

BINARY Model
Classifier feature ACC RMSE FAR
(parameters) count
RF (n estimators = 600) 20 0.90 (0.07) 0.02 (0.01) 0.13 (0.10)
k-NN (k = 2, 20 0.92 (0.07) 0.02 (0.01) 0.08 (0.07)
minkowski distance)
NB 20 0.75 (0.05) 0.04 (0.00) 0.22 (0.10)
SVM (RBF kernel, 20 0.94 (0.07) 0.02 (0.01) 0.06 (0.07)
γ = 0.08, C = 4)
SVM (Poly. kernel, 20 0.91 (0.07) 0.02 (0.01) 0.06 (0.06)
d = 4, C = 16)
UNARY Model
SVM (RBF kernel, 20 0.72 (0.07) 0.04 (0.00) 0.32 (0.10)
γ = 0.05, nu = 0.5)
BINARY Model
Classifier feature FRR F1 score AUC-ROC
(parameters) count
RF (n estimators = 600) 20 0.07 (0.08) 0.90 (0.07) 0.90 (0.07)
k-NN (k = 2, 20 0.09 (0.11) 0.91 (0.09) 0.92 (0.07)
minkowski distance)
NB 20 0.29 (0.12) 0.73 (0.07) 0.75 (0.05)
SVM (RBF kernel, 20 0.07 (0.09) 0.93 (0.08) 0.94 (0.07)
γ = 0.08, C = 4)
SVM (Poly. kernel, 20 0.11 (0.08) 0.91 (0.07) 0.91 (0.07)
d = 4, C = 16)
UNARY Model
SVM (RBF kernel, 20 0.24 (0.06) 0.73 (0.06) N/A
γ = 0.05, nu = 0.5)

ing similar to ten subjects training a HRB model only requires low subject

counts.

If we look at the non-sedentary models we also notice similar patterns.

The initial HR model is the same as that of the sedentary hierarchy. In the
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two biometric form we have HRG. The performances tell the same story of

that of HRB. This time Balance scheme is outperforming the Full scheme in

average accuracy and average F1 Score by 3% and 1%. Here there is no change

in data features and augmentation but there is no significant difference in

performance when increasing feature count. Along with the same conclusion

drawn in HRB, we see that regardless of activity state (i.e. sedentary or

non-sedentary) low levels if imposter data is needed. When looking at the

highest non-sedentary model in the Full scheme we see that we have a much

greater performance in the HRGB model than the HRG model of that of the

Balanced scheme. The HRGB outperforms in average accuracy by 11%. This

indicates that increasing the biometrics is the biggest boost to performance

and this can be done with low subject count in the training process.

Uniary models only need to train with the user’s own data and thus does

not worry about the subject count in terms of imposter data to train on.

When looking at the unary results we see something else. For unary HR

models between the schemes the only difference is feature count and, but

there is no substantial different performance with the same average F1 score

and a difference of 0.03 in average accuracy. However when looking at the

two biometric combinations the feature count makes a big difference. For

the full scheme HRG provided close to guessing at 0.48 ± 0.03 accuracy and

0.55 ± 0.05 but then the balanced scheme rose to 0.72 ± 0.10 and 0.72 ±
0.09. HRB has similar results with the Balance scheme outperforming the

Full scheme 38% and 36% for average accuracy and F1 score respectively.

When considering three biometrics performance actually does not improve

much with no improvement in accuracy or F1 score from HRG to HRGB. So

increasing to many biometrics is not as advantageous in unary training.



Chapter 7

Conclusion and Future Work

In the work we present, we tested the feasibility of authenticating users im-

plicitly based on the three separate biometrics, i.e., heart rate, gait, and

breathing sounds, which are easily obtainable in most of the market wear-

ables. We tried two authentication schemes: the Full scheme and the Balance

scheme. Between the two we found that in the binary case there does not need

to be a high diversity of imposter data to provide high accuracy results and

that increasing the available biometrics in a model increases performance.

For unary cases, we found that increased features to 20 provided the best

performance while increasing biometric only helped up to a point. Through

our detailed analysis, we show that we can authenticate a user with an av-

erage accuracy of 0.94 ± 0.07 and F1 score of 0.93 ± 0.08 using SVM (RBF

kernel) when the user is sedentary. When non-sedentary, average accuracy

of 0.93 ± 0.06 and F1 score of 0.93 ± 0.03, using k Nearest Neighbors (k=2).

When considering the lack of availability of other subject’s data, unary mod-

els and obtain an average accuracy of 0.72 ± 0.10 and a F1 score 0.73 ± 0.06

when sedentary and 0.72 ± 0.10 and a F1 score 0.72 ± 0.09 respective scores

in the non-stationary state.

Things to consider in the future is a complex multi-layered feature se-

lection method and using deep neural networks. This shows the promise to

develop a continuous implicit-authentication system for the market wearables

45
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utilizing their limited sensing and computational capability in order to se-

cure our valuable information as well as to create a safe gateway to unlocking

cars, access online accounts, etc.
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The connectivity of smart technology is ever increasing with the expan-

sion of internet availability. Emerging applications such as financial transac-

tions, healthcare check-ups, and property access can be made through smart

technologies. This also presents a new vulnerability as hackers have more

opportunities to attack users. Therefore, there is an immediate emphasis

on a strong authentication system. While passwords, PINs, or pattern locks

can overwhelm users, active biometric schemes like retina scans require active

use and cannot be used in continuous situations. A solution to this is the

use of implicit continuous biometrics such as heart rate, gait, and breath-

ing patterns. In this work, we present two context-dependent soft-biometric-

based wearable authentication system strategies utilizing the heart rate, gait,

and breathing audio signals. From our detailed analysis, we find that in a

sedentary state, a binary support vector machine with radial basis function

(RBF) kernel can achieve an average accuracy of 0.94 ± 0.07 and F1 score

of 0.93 ± 0.08. In a non-sedentary state, k- Nearest Neighbors (k=2) can

achieve an average accuracy of 0.93± 0.06 and F1 score of 0.93± 0.03, which

shows the promise of this work. Considering the availability of a single users

data, we develop unary models and obtain an average accuracy of 0.72±0.10



and a F1 score 0.73 ± 0.06 when sedentary and 0.72 ± 0.10 and a F1 score

0.72 ± 0.09 respective scores when non-stationary.

Keywords: Wearable User Authentication, Implicit Authentication, Secu-

rity, Multi-Biometric Model
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